skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Song, Shaowei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In light of breakthroughs in superconductivity under high pressure, and considering that record critical temperatures (Tcs) across various systems have been achieved under high pressure, the primary challenge for higher Tcshould no longer solely be to increase Tcunder extreme conditions but also to reduce, or ideally eliminate, the need for applied pressure in retaining pressure-induced or -enhanced superconductivity. The topological semiconductor Bi0.5Sb1.5Te3(BST) was chosen to demonstrate our approach to addressing this challenge and exploring its intriguing physics. Under pressures up to ~50 GPa, three superconducting phases (BST-I, -II, and -III) were observed. A superconducting phase in BST-I appears at ~4 GPa, without a structural transition, suggesting the possible topological nature of this phase. Using the pressure-quench protocol (PQP) recently developed by us, we successfully retained this pressure-induced phase at ambient pressure and revealed the bulk nature of the state. Significantly, this demonstrates recovery of a pressure-quenched sample from a diamond anvil cell at room temperature with the pressure-induced phase retained at ambient pressure. Other superconducting phases were retained in BST-II and -III at ambient pressure and subjected to thermal and temporal stability testing. Superconductivity was also found in BST with Tcup to 10.2 K, the record for this compound series. While PQP maintains superconducting phases in BST at ambient pressure, both depressurization and PQP enhance its Tc, possibly due to microstructures formed during these processes, offering an added avenue to raise Tc. These findings are supported by our density-functional theory calculations. 
    more » « less
  2. Abstract A β‐FeSi2–SiGe nanocomposite is synthesized via a react/transform spark plasma sintering technique, in which eutectoid phase transformation, Ge alloying, selective doping, and sintering are completed in a single process, resulting in a greatly reduced process time and thermal budget. Hierarchical structuring of the SiGe secondary phase to achieve coexistence of a percolated network with isolated nanoscale inclusions effectively decouples the thermal and electrical transport. Combined with selective doping that reduces conduction band offsets, the percolation strategy produces overall electron mobilities 30 times higher than those of similar materials produced using typical powder‐processing routes. As a result, a maximum thermoelectric figure of meritZTof ≈0.7 at 700 °C is achieved in the β‐FeSi2–SiGe nanocomposite. 
    more » « less